This is the current news about centrifugal pump head calculation example|centrifugal pump selection calculator 

centrifugal pump head calculation example|centrifugal pump selection calculator

 centrifugal pump head calculation example|centrifugal pump selection calculator Corrugated replacement Shaker Screen has a unique wave shape of the mesh surface, wave type shaker screen mesh is generally composed of 2 or 3 layers of stainless steel 304 or .

centrifugal pump head calculation example|centrifugal pump selection calculator

A lock ( lock ) or centrifugal pump head calculation example|centrifugal pump selection calculator The Dual Deck Shale Shakers represents the result of ongoing enhancements and advancements in oilfield drilling solids control technology. It incorporates high-performance components and .

centrifugal pump head calculation example|centrifugal pump selection calculator

centrifugal pump head calculation example|centrifugal pump selection calculator : trader What is head and how is it used in a pump system to make calculations easier? … Shale Shaker // Capacity ≤120m³/h Motor Power 1.5x2 kW Dimension 2370x1690x1430 mm Design/Feature Double Amplitude: 4.2-6.0 Force Output: ≤7.5Gs Solids Control Equipment Brand Hubei Craun Technology Equipment .
{plog:ftitle_list}

FSI 5000 Screen FLUID SYSTEMS, INC. (FSI) is engineering and developing solids control equipment and mud handling systems used on drilling rigs. FSI 5000 series linear motion shale shaker is recognized by Oil Gas Drilling, HDD and environment separation applications. H Screening purposed designed FSI screen panels.

Centrifugal pumps are widely used in various industries for moving fluids from one place to another. One of the key parameters to consider when selecting a centrifugal pump is the pump head, which is a measure of the energy imparted to the fluid by the pump. In this article, we will discuss the centrifugal pump head calculation formula and provide an example to illustrate how to calculate the head of a centrifugal pump.

1. Calculate the total head and select the pump. 2. Calculate the NPSH available and check with respect to the NPSH required. 3. Calculate the specific speed and predict the pump efficiency. Calculate the suction specific speed and Thoma number and check the prediction of the

Centrifugal Pump Head Calculation Formula

The total head (H) of a centrifugal pump can be calculated using the following formula:

\[ H = \frac{P_{outlet} - P_{inlet}}{\rho \cdot g} + \frac{v_{outlet}^2 - v_{inlet}^2}{2 \cdot g} + z_{outlet} - z_{inlet} \]

Where:

- \( P_{outlet} \) = Pressure at the outlet (Pa)

- \( P_{inlet} \) = Pressure at the inlet (Pa)

- \( \rho \) = Density of the fluid (kg/m³)

- \( g \) = Acceleration due to gravity (m/s²)

- \( v_{outlet} \) = Velocity at the outlet (m/s)

- \( v_{inlet} \) = Velocity at the inlet (m/s)

- \( z_{outlet} \) = Elevation at the outlet (m)

- \( z_{inlet} \) = Elevation at the inlet (m)

Pump Head Calculation Example

Let's consider an example to calculate the head of a centrifugal pump. Assume we have a centrifugal pump pumping water at 20°C with a flow rate of 10 L/s. The vacuum gauge at the inlet reads 0.031 MPa, and the pressure gauge at the outlet reads 0.126 MPa (gauge pressure). The density of water at 20°C is approximately 998 kg/m³.

Given:

- Flow rate (Q) = 10 L/s = 0.01 m³/s

- Inlet pressure (P_{inlet}) = 0.031 MPa = 31,000 Pa

- Outlet pressure (P_{outlet}) = 0.126 MPa = 126,000 Pa

- Density of water (\( \rho \)) = 998 kg/m³

- Acceleration due to gravity (\( g \)) = 9.81 m/s²

- Inlet velocity (v_{inlet}) = 0 m/s (assumed)

- Outlet velocity (v_{outlet}) = Q / A_{outlet}, where A_{outlet} is the outlet area

Next, we need to calculate the elevation difference (\( z_{outlet} - z_{inlet} \)). If the pump is installed horizontally, this term can be neglected.

Now, we can substitute the given values into the total head formula to calculate the head of the centrifugal pump.

\[ H = \frac{126,000 - 31,000}{998 \cdot 9.81} + \frac{v_{outlet}^2 - 0}{2 \cdot 9.81} \]

\[ H = \frac{95,000}{9,807} + \frac{v_{outlet}^2}{19.62} \]

\[ H = 9.68 + \frac{v_{outlet}^2}{19.62} \]

What is head and how is it used in a pump system to make calculations easier? …

Chapter 3: Linear Motion Preliminaries • Linear motion is motion in a straight line. • Note that motion is relative: e.g. your paper is moving at 107 000 km/hr relative to the sun. But it is at rest relative to you. Unless otherwise stated, when we talk about speed of things in the environment, we will mean relative to the Earth’s surface.

centrifugal pump head calculation example|centrifugal pump selection calculator
centrifugal pump head calculation example|centrifugal pump selection calculator.
centrifugal pump head calculation example|centrifugal pump selection calculator
centrifugal pump head calculation example|centrifugal pump selection calculator.
Photo By: centrifugal pump head calculation example|centrifugal pump selection calculator
VIRIN: 44523-50786-27744

Related Stories